
An Ultra-Low Latency and Compatible PCIe
Interconnect for Rack-scale Communication

Yibo Huang★, Yukai Huang★, Ming Yan★, Jiayu Hu†, Cunming Liang†, Yang Xu★,
Wenxiong Zou★, Yiming Zhang★, Rui Zhang★, Chunpu Huang★, Jie Wu★

★Fudan University, China †Intel, China

1 MOTIVATION
The emerging resource disaggregation architecture empha-
sizes the need for ultra-low latency and high throughput
rack-scale communicationwithin data centers, enabling high-
quality online services and real-time analysis [21, 7, 5, 10,
22, 8]. The lower the latency, the better [15, 6]. There is a
growing trend that, high-density modern computing (e.g.,
TPU [1]) and storage (e.g., Non-Volatile Memory [23]) hard-
ware are deployed and disaggregated in a rack [5], termed
as rack-scale computers [25], which shift the potential bot-
tleneck from computation to network [24, 16]. The latency
requirements of rack-scale networks need to be maintained
in the range of 3-5us [5]. However, many Ethernet-based
studies on rack-scale networks [4, 13] are dependent on
either workload which limits generalization, or a central-
ized controller which compromises performance. Therefore,
recent microsecond-latency kernel-bypassing networking
technologies, including hardware offloading like Remote Di-
rect Memory Access (RDMA) [9] or user-space IO stacks
like DPDK [11], are used as key enablers for high-speed
rack-scale communication.

Unfortunately, these state-of-the-art works fundamentally
rely on heavily layered protocol stacks, and the translation
overheads between protocol layers are inevitable. For ex-
ample, while RDMA over Converged Ethernet (RoCE) [9]
allows the network card to directly access the memory of
remote machines, one-way data movement in Figure 1(a)
requires at least four translations among PCIe bus, RDMA
protocol (i.e., IBTA protocol) and UDP. Thus, it is hard to
avoid extra latency overhead due to this protocol transla-
tion. Meanwhile, the Ethernet-based access to PCIe-attached
peripherals across machines in a rack further increases the
frequency of data-path translations. Additionally, protocol
stack hardware offloading schemes also require complex
connection/memory resource management within RNICs,
which further adds communication overhead. For example,
RDMA exploits limited RNIC memory to cache physical-
virtual memory mapping tables and connection contexts,
resulting in higher tail latency under cache miss [12].
Opportunities with high-speed PCIe interconnect.

Can we get rid of protocol translation overhead and complex
in-NIC resource management for the rack-scale networks to

OFA Stack

RDMA Verbs

IBTA Protocol
UDP

IP
Ethernet Link Layer
RNIC (RoCE v2)

PC
Ie

Applications

Local Host

RDMA

OFA Stack

RDMA Verbs

IBTA Protocol
UDP

IP
Ethernet Link Layer
RNIC (RoCE v2)

PC
Ie

Applications

Remote Host

Net

(a) RDMA transport stack.

Applications
Software Stack
(e.g., NTSocks)

NTB Verbs

Applications
Software Stack
(e.g., NTSocks)

NTB Verbs

NTB EndpointNTB Endpoint

I/O

PCIe

Local Host Remote Host

(b) PCIe NTB transport stack.

Figure 1: PCIe fabric avoids the translation between
PCIe and network protocol, compared to RDMA.

further reduce the communication latency? We argue that
using advanced PCIe interconnect, such as compute express
link (CXL), Gen-Z and PCIe non-transparent bridge (NTB),
presents an optimal choice for high-speed networking, due
to no translation between PCIe and network protocol and
bypassing complex in-NIC resource management (as shown
in Figure 1(b)). Particularly, PCIe NTB provides as a special
device, allows to interconnect independent machines and
peripherals to the same PCIe fabric like a bridge [17, 20].
By mapping the shared memory space between indepen-
dent systems via reliable transaction layer protocol (TLP),
it enables nanosecond-level ultra-low latency and efficient
remote memory access. For example, PCIe NTB achieves up
to 5.6 × speedup compared to RDMA in Figure 3). It can also
achieve high throughput by matching evolving PCIe band-
width (e.g., PCIe 6.0×16). Due to the well-known inefficiency
(e.g., high system call overhead) [11, 14] of the kernel-space
implementation (e.g., ntb_hw_intel) [2], this paper focuses
only on user-space NTB (e.g., DPDK polling mode driver) [19]
to bypass the kernel’s complexity.

2 KEY INSIGHTS AND CONTRIBUTIONS
Therefore, our vision is using PCIe interconnect for high-
speed rack-scale network, as shown in Figure 2. We pro-
pose an in-rack network architecture with PCIe NTB fabric,
where one PCIe cluster switch is used to do memory address
routing among different PCIe domains and a PCIe NTB end-
point at end hosts is leveraged to process memory-mapped
IO request. By this, we can enable ultra-low latency and
lightweight PCIe interconnect for rack-scale communication.
However, we find that native PCIe NTB lacks transparency
support because it is originally designed for device sharing

1

CoNEXT’22, December 2022, Rome, Italy Yibo Huang, et al.

CPU
Root
Complex

Memory

PCIe
Switch

NTBGPU

NIC

NVMe SSD

•••

Host A

PCIe Device PCIe Link
External PCIe Cable
PCIe NTB Cluster Switch

PCIe Switch

•••

Rack

Figure 2: The in-rack network with PCIe NTB fabric.

 0

 1

 2

 3

 4

 5

 6

 7

8 32 128 512 2048 8192

P
5
0
/P

9
9
 L

a
te

n
c
y
 (

µ
s
)

Payload Size(B)

raw-ntb P50
raw-ntb P99
RDMA-write P50
RDMA-write P99

Figure 3: User-space PCIe NTB can achieve better la-
tency than RDMA (Mellanox ConnectX-5 RNIC).

across independent PCIe domains. So, we designed and im-
plemented NTSocks, a lightweight end-host network stack
over PCIe interconnect for rack-scale applications to pre-
serve high performance in a transparent manner. With this
indirection layer, any existing rack-scale applications over
socket communication can run with minimal or no code
modification.

Based on this architecture, we make the following contri-
butions:
• We propose a generic and high-performance socket-like
abstraction with common network functions by using: i)
lock-free ringbuffers over NTB memory via Remote Write
primitive, ii) transparent zero-copy support, iii) and adap-
tive receiver-driven flow control for preventing message
overflow.

• We design a dataplane core-partition model, which allo-
cates cores for each partition on demand (e.g., one core
for multiple partitions), to trade-off between multi-core
scalability and CPU efficiency. Partition is a new abstrac-
tion for scalability on multi-core machines that divides
the limited NTB-enabled shared memory into multiple
parallel units, and each unit (i.e., a partition) is core-driven
and multiplexed by a set of connections.

• We propose a hierarchical performance isolation mecha-
nism on top of partition with: i) a per-connection message
slicing for eliminating head-of-line (HOL) blocking among
intra-partition connections, and ii) inter-partition load bal-
ancing at connection granularity which uses a round-robin
connection distribution based on workloads (e.g., number
of per-partition active connections).

• Weevaluate the benefits of NTSockswithmicro-benchmarks
andmultiple real-world applications.We open sourceNTSocks
at https://github.com/NTSocks/.

3 MAIN ARTIFACTS
By building NTSocks on DPDK NTB Polling Mode Driver
(PMD), we implement NTSocks in C language, including
three components: NTP, libnts and NTM. Based on the DPDK
NTB polling mode driver, we implement data plane compo-
nent NTP with about 2500 lines of C code (LoCs). The run-
time library libnts can be directly linked to the application
program to provide all POSIX socket-related function calls,

and its logic implementation uses about 3700 LoCs. The con-
trol plane NTM runs on each machine as a daemon process,
stores user-defined control plane information, and provides
IP port allocation, access control, fault migration, and TCP
fallback capabilities. It takes about 4100 LoCs to implement
NTM. The above three components all rely on a customized
general function library libnts-utils implemented by about
4000 LoCs, which provides functions such as inter-process
SHM communication protocol, SHM pool, hash function, and
so on. NTSocks currently supports 64-bit X86 architecture,
adapting to other platforms which needn’t change lots of
code. The entire NTSocks system runs as a user-mode pro-
cess in the Linux system environment without any changes.

4 KEY RESULTS
We find that NTSocks outperforms the prior state-of-the-
art network stacks [12, 18] with acceptable overhead while
realizing high scalability and isolation. For example, NTSocks
achieves dramatically better latency by up to 20.4× and 2.3×,
and lower tail latency by up to 22.7× and 2.6× than Linux
TCP and libVMA [18], respectively. We further port typical
Key-Value Store (KVS), Nginx and Apache benchmarking tool
(ab) to NTSocks with little or even no modification on them.
By benchmarking KVS with various YCSB workloads [3],
NTSocks achieves better latency by up to 24.5× and 1.58×,
compared to TCP Redis and RDMA respectively. For Nginx,
NTSocks outperforms Linux TCP by up to 6.7×.

REFERENCES
[1] Google Cloud. 2018. Tpu pods. https://cloud.google.com/tpu/. (2018).
[2] Linux Kernel Community. 2020. Ntb drivers in linux kernel. https:

//www.kernel.org/doc/Documentation/ntb.txt. (2020).
[3] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving sys- tems with
ycsb. In Proceedings of the First ACM Symposium on Cloud Computing,
143–145.

[4] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015. R2c2:
a network stack for rack-scale computers. ACM SIGCOMM Computer
Communication Review, 45, 4, 551–564.

[5] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2016. Network requirements for resource disaggregation. In 12th
{USENIX} symposium on operating systems design and implementa-
tion ({OSDI} 16), 249–264.

2

https://github.com/NTSocks/
https://cloud.google.com/tpu/
https://www.kernel.org/doc/Documentation/ntb.txt
https://www.kernel.org/doc/Documentation/ntb.txt

An Ultra-Low Latency and Compatible PCIe Interconnect for Rack-scale Communication CoNEXT’22, December 2022, Rome, Italy

[6] Yixiao Gao et al. 2021. When cloud storage meets {rdma}. In 18th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 21), 519–533.

[7] Dan Gibson et al. 2022. Aquila: a unified, low-latency fabric for
datacenter networks. In 19th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 22), 1249–1266.

[8] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. 2017. Efficient memory disaggregation with infin-
iswap. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), 649–667.

[9] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. 2016. Rdma over commodity eth-
ernet at scale. In Proceedings of the 2016 ACM SIGCOMM Conference,
202–215.

[10] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. 2022. Clio: a hardware-software co-designed disaggregated
memory system. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 417–433.

[11] EunYoung Jeong, ShinaeWood,Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. Mtcp: a
highly scalable user-level {tcp} stack for multicore systems. In 11th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 14), 489–502.

[12] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacen-
ter rpcs can be general and fast. In 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19), 1–16.

[13] Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe, Antony Row-
stron, Hugh Williams, and Xiaohan Zhao. 2016. Xfabric: a reconfig-
urable in-rack network for rack-scale computers. In 13th {USENIX}
Symposium onNetworked SystemsDesign and Implementation ({NSDI}
16), 15–29.

[14] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. 2019.
Socksdirect: datacenter sockets can be fast and compatible. In Pro-
ceedings of the ACM Special Interest Group on Data Communication,
90–103.

[15] Yuliang Li et al. 2019. Hpcc: high precision congestion control. In
Proceedings of the ACM Special Interest Group on Data Communication,
44–58.

[16] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind
Krishnamurthy. 2018. Parameter hub: a rack-scale parameter server
for distributed deep neural network training. In Proceedings of the
ACM Symposium on Cloud Computing, 41–54.

[17] JonasMarkussen, Lars Bjørlykke Kristiansen, Håkon Kvale Stensland,
Friedrich Seifert, Carsten Griwodz, and Pål Halvorsen. 2018. Flexible
device sharing in pcie clusters using device lending. In Proceedings
of the 47th International Conference on Parallel Processing Companion,
1–10.

[18] Mellanox. 2019. Messaging accelerator (vma). Available at https://git
hub.com/mellanox/libvma. (2019).

[19] DPDK Project. 2020. Ntb rawdev driver. https://doc.dpdk.org/guides
/rawdevs/ntb.html. (2020).

[20] Jack Regula. 2004. Using non-transparent bridging in pci express
systems. PLX Technology, Inc, 31.

[21] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
Legoos: a disseminated, distributed {os} for hardware resource dis-
aggregation. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), 69–87.

[22] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating
persistent memory and controlling them remotely: an exploration of
passive disaggregated key-value stores. In 2020 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 20), 33–48.

[23] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and Binyu Zang.
2021. Characterizing and optimizing remote persistent memory
with rdma and nvm. In 2021 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 21), 523–536.

[24] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang, Yibin Shen, and
Xin Long. 2020. High-density multi-tenant bare-metal cloud. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 483–495.

[25] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis,
Ion Stoica, and Xin Jin. 2020. Racksched: a microsecond-scale sched-
uler for rack-scale computers. In 14th {USENIX} Symposium on Op-
erating Systems Design and Implementation ({OSDI} 20), 1225–1240.

3

https://github.com/mellanox/libvma
https://github.com/mellanox/libvma
https://doc.dpdk.org/guides/rawdevs/ntb.html
https://doc.dpdk.org/guides/rawdevs/ntb.html

	1 Motivation
	2 Key Insights and Contributions
	3 Main Artifacts
	4 Key Results

